

QUIMICA ORGÁNICA II

1.- Carrera/s: Bromatología

2.- Año de Vigencia: 2.008

3.- Carga Horaria: 75 hs

4.- Equipo de cátedra: Prof. Titular: Lic. Elba Haydee ALCARAZ

Prof. Asociado: Ing. Fernando Roberto FREIRE

JTP: Ing. Alicia María SANCHEZ

ATP: Brom. Sandra Patricia CASTRO ATP: Ing. Silvia Cristina CLAVIJO

5.- Objetivos generales:

• Comprender la importancia de la Química Orgánica en cada carrera.

- Comprender los fundamentos teóricos de las reacciones orgánicas.
- Predecir productos principales y secundarios de una reacción.
- Identificar compuestos orgánicos mediante técnicas analíticas en aula y laboratorio.
- Nombrar correctamente los compuestos orgánicos.
- Relacionar los conocimientos previos con los nuevos.
- Desarrollar habilidades manuales en el laboratorio (dependiendo de la carrera que se curse).
- Realizar trabajos de investigación bibliográfica y práctica.
- · Resolver problemas en el aula.

6.- Contenidos:

Unidad № 1: ALQUENOS-ADICIÓN ELECTROFÍLICA.

Alquenos: estructura y preparación. El doble enlace. Nomenclatura. Fuente industrial. Preparación: a partir de halogenuros de alquilo. A partir de alcoholes. A partir de dihalogenuros vecinales. Reducción de alquinos. Reacciones del doble enlace: reacciones de adición: nucleofílicas y electrofílicas. Diagramas de energía. Velocidad de reacción. Estabilidad de sistemas cargados. Iones carbonio. Distintos tipos. Estabilidad. Mecanismo de la reacción de A_dE . Regla de Markovnikoff. Orientación de la A_dE . Análisis: a) por efectos derivados del desplazamiento electrónico; b) por la estabilidad del intermedio (iones carbonio) Transposiciones. Estereoquímica. Regioespecificidad (caso del fumárico y otros). Estereoselectividad (caso del Z-2-fenil-2-buteno + Br_2). Adiciones sin. Adiciones anti. Condiciones. Distintas reacciones de adición a un alqueno: con HX; con X_2 en medio polar y no polar; con H_2SO_4 ; con H_2O ; con MnO_4 ; ozonólisis. Reacciones de Hidrogenación. Aplicación industrial. Índice de Iodo. Adición de HBr. Efecto peróxido. Reacciones de radicales libres. Polímeros. P.V.C. Polietileno. Terpenos. Adiciones a compuestos conjugados (adición 1,2 y adición 1,4).

Alquinos: reacciones de adición y de sustitución. Carácter ácido del hidrógeno acetilénico. Reacciones

Unidad Nº 2: ALDEHIDOS Y CETONAS ADICIONES NUCLEOFÍLICAS.

Aldehídos y cetonas. Estructura. Nomenclatura. Propiedades físicas. Preparación. Por oxidación de alcoholes. Por acilación de Friedel – Crafts. Por reducción de ácidos carboxílicos

Reacciones de adición nucleofílicas sobre el grupo carbonilo: mecanismo de la reacción. Variables que influyen en la velocidad y el mecanismo. Adición de reactivo de Grignard. Cianhidrinas. Acetales.

La Facultad de Ciencias Aplicadas a la Industria dependiente de la U.N.Cuyo se encuentra certificada bajo Normas ISO 9001:2000.

RA 002

Cetales. Hidratos. Hidrógenos alfa. Reacciones de condensación. Adición y deshidratación. Adición de derivados del amoníaco. Iminas. Reacción de Cannizaro

. Resinas de fenol- formaldehído (Bakelita) Adición en análogos carbonílicos. Adiciones nucleofílicas en compuestos aromáticos Aplicaciones industriales.

<u>Unidad № 3</u>: <u>HALOGENUROS DE ALQUILO. SUSTITUCIÓN NUCLEOFÍLICA</u> SOBRE CARBONO SATURADO.

Halogenuros de alquilo. Estructura. Clasificación. Nomenclatura. Propiedades físicas. Preparación: a partir de alcoholes. A partir de hidrocarburos. A partir de alquenos y alquinos.

Reacción de sustitución nucleofílica sobre carbono saturado: mecanismo de reacción. Cinética de la sustitución nucleofílica alifática. Reacciones de segundo y primer orden. Estereoquímica. Variables que influyen en la velocidad de reacción. Ámbito de aplicabilidad de la S_N. Halogenoalcanos. Alcoholes. Éteres. Tioéteres. Aminas. Hidruros. Reacciones de condensación.

<u>Unidad Nº 4</u>: ACIDOS CARBOXÍLICOS Y SUS DERIVADOS. SUSTITUCIÓN NUCLEOFÍLICA SOBRE CARBONO NO SATURADO.

Ácidos carboxílicos. Estructura. Variación de la acidez. Nomenclatura. Propiedades físicas. Sales. Fuente industrial. Preparación: a partir de alcoholes, de alquilbencenos, de reactivos de Grignard, de nitrilos. Síntesis malónica.

Derivados de ácidos carboxílicos: halogenuros, anhídridos, ésteres y amidas. Alcoholes por reducción. Sustitución nucleofílica sobre el carbono del grupo carbonilo: mecanismo de la reacción. Grupo saliente. Reacciones de condensación catalizadas por bases. S_N sobre grupo aromático. Jabones. Detergentes. Aplicaciones industriales.

<u>Unidad № 5</u>: <u>ALCOHOLES.</u> <u>ELIMINACIÓN.</u>

Alcoholes. Clasificación. Nomenclatura. Propiedades físicas y químicas. Alcoholes como ácidos y bases. Fuente industrial. Métodos de preparación: a partir de alquenos. Síntesis de Grignard. A partir de halogenuros de alquilo. Condensación aldólica. Reducción de compuestos carbonílicos.

Mecanismo de reacción de Eliminación. Estereoquímica. Dirección de la eliminación. Orientación de Saytseff y orientación de Hoffman. Eliminación frente a sustitución. Alquenos. Alquinos. Aldehídos y cetonas. Eliminaciones 1,2. Aplicaciones industriales.

Unidad № 6: COMPUESTOS AROMÁTICOS. SUSTITUCIÓN ELECTROFÍLICA.

Compuestos aromáticos. El benceno: su estructura. Medidas de enlaces interatómicos. Derivados disustituídos. Descripción por resonancia. Energía de Resonancia. Calores de hidrogenación. Descripción por Orbitales moleculares. Orbital Pi hexacéntrico extendido. Regla de Huckel. Propiedades que encierra el término "aromático" (tipo especial de insaturación, estabilidad del núcleo aromático, facilidad de formación, estabilidad de los enoles, estabilidad de las sales de diazonio, formación de quinonas) Sustitución electrofílica. Mecanismo. Estabilidad del intermedio. Nitración. Sulfonación. Halogenación. Acilación. Alquilación. Catalizador de Friedel y Crafts. Reactivos electrofílicos. Orientación de las Sustituciones electrofílicas aromáticas. Sustituyentes del núcleo aromático:. aceptores de electrones y dadores de electrones. Su influencia frente a una posterior reacción de S_E Activadores y desactivadores de núcleo. Orientadores o-p y orientadores meta. El catión diazonio como reactivo electrofílico. Reacciones de copulación o acoplamiento. Compuestos aromáticos policíclicos. Compuestos aromáticos heterocíclicos. Sustitución nucleofílica sobre grupo aromático.

Unidad Nº 7: QUIMICA ORGANICA.

Hidratos de carbono: características y propiedades. Aldosas y cetosas. Nomenclatura genérica y estereoquímica. Carbohidratos simples. Estructuras lineales. Estructuras cíclicas (hemiacetales internos)

La Facultad de Ciencias Aplicadas a la Industria dependiente de la U.N.Cuyo se encuentra certificada bajo Normas ISO 9001:2000.

RA 002

Conformaciones (alfa y beta) Oxidación. Azúcares reductores y no reductores. Reacciones de caracterización Reacción de Feheling. Reacción de Tollens. Glucósidos. Uniones glucosídicas.

Oligosacáridos. Nomenclatura. Maltosa, Lactosa, Sacarosa. Azúcar invertido.

Polisacáridos: Almidón. Celulosa.

Nucleósidos y nucleótidos. Composición química. ADN. ARN.

Proteínas. Aminoácidos. Características estructurales (iones dipolares o sales internas) Punto isoeléctrico. Configuración de los aminoácidos naturales. Aminoácidos esenciales.

Péptidos. Enlace peptídico. Estructura. Nomenclatura.

Proteínas: clasificación (fibrosas y globulares) Estructura primaria. Cadena peptídica. Cadenas laterales. Punto isoléctrico. Electroforesis. Estructuras secundaria, terciaria, cuaternaria (alfa-hélice y lámina plegada)

Lípidos: ésteres del glicerol y ácidos grasos. Grasas y aceites. Fosfolípidos. Esteroides. Características. Concepto.

7.- Bibliografía:

- Morrison and Boyd- QUIMICA ORGANICA- Addison- Wesley Iberoamericana. USA –1990
- Pine, Hendrickon, Cram y Hammond- QUIMICA ORGANICA- McGraw-Hill- México-1990
- Fox & Withesell- QUIMICA ORGÄNICA- Addison- Wesley Iberoamericana. México- 2000.

Streitweiser, A. Heathcoock, C.H. <u>QUÍMICA ORGÁNICA</u>. Mc Graw Hill. España. 1.999. Carey, F. A. <u>QUÍMICA ORGÁNICA</u>. Mc Graw Hill. España. 1.999.

- McMurry- QUIMICA ORGANICA Grupo Editorial Iberoamericana- México- 1994.
- Brewster. QUÍMICA ORGÁNICA. Ed. Médico Quirúrgica. Argentina. 1.960.
- Noller, C. QUIMICA DE LOS COMPUESTOS ORGANICOS- McGraw-Hill- México –1978
- Austin, George- MANUAL DE PROCESOS QUIMICOS EN LA INDUSTRIA- Tomos I,II y III- Ed. Mc Graw-Hill.
- Quiñoá-Riguera- <u>Cuestiones y ejercicios de QUIMICA ORGANICA</u>- Mc Graw-Hill-España-1996
- Domínguez, X. Fundamentos y Problemas de QUIMICA ORGANICA- Limusa México-1973.
- Belitz-Grosch- QUIMICA DE LOS ALIMENTOS- Acribia- España- 1988.

8.- Actividades Teóricas:

- Investigación bibliográfica.
- Resolución de ejercicios y problemas.

9.- Actividades Prácticas:

- Aislamiento y purificación de sustancias orgánicas.
- Identificación de sustancias orgánicas
- Reacciones de sustancias orgánicas.

10.- Metodología de Enseñanza:

- Se privilegiará el trabajo grupal
- Discusión dirigida y libre
- Técnicas de problemas
- Investigación bibliográfica
- Clase expositiva

11.- Evaluación:

• Examinaciones parciales (sobre aspectos teóricos y prácticos)

La Facultad de Ciencias Aplicadas a la Industria dependiente de la U.N.Cuyo se encuentra certificada bajo Normas ISO 9001:2000.

RA 002

- Preprácticos (escritos y/u orales)
- Realización satisfactoria de Trabajos prácticos de aula y laboratorio
- Examen final.

12.- Distribución de la carga horaria:

Actividades		Horas
1.	Teóricas	30
2.	Apoyo teórico (incluye trabajos prácticos de aula)	31
3.	Experimentales (laboratorio, planta piloto, taller, etc.)	14
4.	Resolución de Problemas de Ingeniería (sólo	
	incluye Problemas Abiertos)	
Total de Horas de la Actividad Curricular		75